Outline

1. Introduction
2. Motivation
3. Acquisition
4. Data representation
5. Storage
6. PCL
7. PCL Examples
Introduction (1/3)

What are Point Clouds?

- Point Cloud = a "cloud" (i.e., collection) of nD points (usually $n = 3$)
- $p_i = \{x_i, y_i, z_i\} \rightarrow P = \{p_1, p_2, \ldots, p_i, \ldots, p_n\}$
- used to represent 3D information about the world
What are Point Clouds?

- besides XYZ data, each point p can hold additional information
- examples include: RGB colors, intensity values, distances, segmentation results, etc
What are Point Clouds?
What are **Point Clouds**?
Introduction (3/3)

What are **Point Clouds**?
Outline

1. Introduction
2. Motivation
3. Acquisition
4. Data representation
5. Storage
6. PCL
7. PCL Examples
Point Clouds are important for a lot of reasons (!). Besides representing geometry, they can complement and supersede images when data has a high dimensionality.
Motivation (2/5)

Why are Point Clouds important?

Concrete example 1: get the cup from the drawer.
Motivation (3/5)

Why are Point Clouds important?

Concrete example 2: find the door and its handle, and open it.
Motivation (4/5)

Why are **Point Clouds** important?

Concrete example 3: **safe** motion planning/manipulation.
Motivation (5/5)

Why are **Point Clouds** important?

False positives!!!
Outline

1. Introduction
2. Motivation
3. Acquisition
4. Data representation
5. Storage
6. PCL
7. PCL Examples
How are **Point Clouds** acquired? Where do they come from?

There are many different sensors that can generate 3D information. Examples:

- laser/lidar sensors (2D/3D)
- stereo cameras
- time-of-flight (TOF) cameras
- etc...
How are **Point Clouds** acquired? Where do they come from?

The PR2 sensor head:

- two pairs of stereo cameras (narrow + wide)
- tilting laser sensor
How are Point Clouds acquired? Where do they come from?

Simulation (!):

- raytracing + stereo imagery fed into the same algorithmic modules that are used to process real data
Outline

1. Introduction
2. Motivation
3. Acquisition
4. Data representation
5. Storage
6. PCL
7. PCL Examples
As previously presented:

- A point p is represented as an n-tuple, e.g.,
 $$p_i = \{x_i, y_i, z_i, r_i, g_i, b_i, dist_i, \cdots \}$$

- A point cloud P is represented as a collection of points p_i, e.g.,
 $$P = \{p_1, p_2, \cdots, p_i, \cdots, p_n\}$$
In terms of data structures:

- an XYZ point can be represented as:
  ```
  float32 x
  float32 y
  float32 z
  ```

- a n-dimensional point can be represented as:
  ```
  float32[] point
  ```
 which is nothing else but a:
  ```
  std::vector<float32> point
  ```
 in C++

- potential problem: everything is represented as floats (!)
In terms of data structures:

▶ therefore a point cloud \mathcal{P} is:

- `Point[]` points
- `std::vector<Point>` points

in C++, where `Point` is the structure/data type representing a single point p
Because Point Clouds are big:

- operations on them are typically slower (more data, more computations)
- they are expensive to store, especially if all data is represented as floats/doubles

Solutions:
Because Point Clouds are big:

- operations on them are typically slower (more data, more computations)
- they are expensive to store, especially if all data is represented as floats/doubles

Solutions:

- store each dimension data in different (the most appropriate) formats, e.g., rgb - 24bits, instead of 3×4 (sizeof float)
- group data together, and try to keep it aligned (e.g., 16bit for SSE) to speed up computations
ROS representations for Point Cloud Data

The ROS PointCloud(2) data format (sensor_msgs/PointCloud2.msg):

```
# This message holds a collection of nD points, as a binary blob.
Header header

# 2D structure of the point cloud. If the cloud is unordered,
# height is 1 and width is the length of the point cloud.
uint32 height
uint32 width

# Describes the channels and their layout in the binary data blob
PointField[] fields

bool is_bigendian  # Is this data bigendian?
uint32 point_step  # Length of a point in bytes
uint32 row_step    # Length of a row in bytes
uint8[] data       # Actual point data, size is (row_step*height)
bool is_dense      # True if there are no invalid points
```

Radu Bogdan RUSU
Data representation (6/7)

ROS representations for Point Cloud Data

where PointField (sensor_msgs/PointField.msg) is:

```c
# This message holds the description of one point entry in the #PointCloud2 message format.
uint8 INT8    = 1
uint8 UINT8   = 2
uint8 INT16   = 3
uint8 UINT16  = 4
uint8 INT32   = 5
uint8 UINT32  = 6
uint8 FLOAT32 = 7
uint8 FLOAT64 = 8
string name   # Name of field
uint32 offset # Offset from start of point struct
uint8 datatype # Datatype enumeration see above
uint32 count  # How many elements in field
```

PointField examples:

- "x", 0, 7, 1
- "y", 4, 7, 1
- "z", 8, 7, 1
- "rgba", 12, 6, 1
- "normal_x", 16, 8, 1
- "normal_y", 20, 8, 1
- "normal_z", 24, 8, 1
- "fpfh", 32, 7, 33
ROS representations for Point Cloud Data

- binary blobs are hard to work with
- we provide a custom converter, Publisher/Subscriber, transport tools, filters, etc, similar to images
- templated types: \texttt{PointCloud2} \rightarrow \texttt{PointCloud<PointT>}
- examples of \texttt{PointT}:

```c
struct PointXYZ {
    float x;
    float y;
    float z;
}
struct Normal {
    float normal[3];
    float curvature;
}
```
Outline

1. Introduction
2. Motivation
3. Acquisition
4. Data representation
5. Storage
6. PCL
7. PCL Examples
Point Cloud Data storage (1/2)

ROS input/output

- **PointCloud2**.msg and **PointField**.msg are ROS messages
- they can be published on the network, saved/loaded to/from BAG files (ROS message logs)

usage example:

```
$ rostopic find sensor_msgs/PointCloud2 | xargs roscorec -F foo
[ INFO] [1271297447.656414502]: Recording to foo.bag.
^C
[ INFO] [1271297450.723504983]: Closing foo.bag.
$ rosply -c foo.bag
bag: foo.bag
version: 1.2
start_time: 1271297447974280542
end_time: 1271297449983577462
length: 2009296920
topics:
  - name: /narrow_stereo_textured/points2
    count: 3
datatype: sensor_msgs/PointCloud2
md5sum: 1158d486dd51d683ce2f1be655c3c181
```
In addition, point clouds can be stored to disk as files, into the PCD format.

```
# Point Cloud Data (PCD) file format v.5
FIELDS x y z rgba
SIZE 4 4 4 4
TYPE F F F U
WIDTH 307200
HEIGHT 1
POINTS 307200
DATA binary
...
```

DATA can be either *ascii* or *binary*. If *ascii*, then

```
DATA ascii
0.0054216 0.11349 0.040749
-0.0017447 0.11425 0.041273
-0.010661 0.11338 0.040916
0.026422 0.11499 0.032623
...
```
Outline

1. Introduction
2. Motivation
3. Acquisition
4. Data representation
5. Storage
6. PCL
7. PCL Examples
Point Cloud Library (1/10)

http://pcl.ros.org/

Radu Bogdan RUSU
Introduction Motivation Acquisition Data representation Storage [PCL] PCL Examples

What is PCL (Point Cloud Library)?

PCL is:

- fully templated modern C++ library for 3D point cloud processing
- uses SSE optimizations (Eigen backend) for fast computations on modern CPUs
- uses OpenMP and Intel TBB for parallelization
- passes data between modules (e.g., algorithms) using Boost shared pointers

PCL deprecates older ROS packages such as point_cloud_mapping and replaces sensor_msgs/PointCloud.msg with the modern sensor_msgs/PointCloud2.msg format (!)
PCL (Point Cloud Library) structure

- collection of smaller, modular C++ libraries:
 - libpcl_features: many 3D features (e.g., normals and curvatures, boundary points, moment invariants, principal curvatures, Point Feature Histograms (PFH), Fast PFH, ...)
 - libpcl_surface: surface reconstruction techniques (e.g., meshing, convex hulls, Moving Least Squares, ...)
 - libpcl_filters: point cloud data filters (e.g., downsampling, outlier removal, indices extraction, projections, ...)
 - libpcl_io: I/O operations (e.g., writing to/reading from PCD (Point Cloud Data) and BAG files)
 - libpcl_segmentation: segmentation operations (e.g., cluster extraction, Sample Consensus model fitting, polygonal prism extraction, ...)
 - libpcl_registration: point cloud registration methods (e.g., Iterative Closest Point (ICP), non linear optimizations, ...)
 - unit tests, examples, tutorials (some are work in progress)
 - C++ classes are templated building blocks (nodelets!)
Philosophy: *write once, parameterize everywhere*

PPG: Perception Processing Graphs
Why PPG?

- Algorithmically:
 door detection = table detection = wall detection = ...
- the only thing that changes is: parameters (constraints)!
Inheritance simplifies development and testing:

```cpp
pcl::Feature<PointT> feat;
feat = pcl::Normal<PointT> (input);
feat = pcl::FPFH<PointT> (input);
feat = pcl::BoundaryPoint<PointT> (input);
...
feat.compute (&output);
...```

Radu Bogdan RUSU
Point Cloud Library (7/10)

PCL 0.3 statistics

Misc, stats:
- over 30 releases already (0.1.x → 0.3)
- over 100 classes
- over 60k lines of code (PCL, ROS interface, Visualization) – in contrast, OpenCV trunk has 300k
- young library: only 9 months of development so far, but the algorithms and code bits have been around for 2-3 years
- external dependencies (for now) on eigen, cminpack, ANN, FLANN, TBB
- internal dependencies for PCL_ROS: dynamic_reconfigure, message_filters, TF
Nodelets

- write once, parameterize everywhere $\implies$ modular code
- ideally, each algorithm is a “building block” that consumes input(s) and produces some output(s)
- in ROS, this is what we call a node. inter-process data passing however is inefficient. ideally we need shared memory.

Solution:
nodelets = “nodes in nodes” = single-process, multi-threading
Nodelets

- *write once, parameterize everywhere* → modular code
- ideally, each algorithm is a “building block” that consumes input(s) and produces some output(s)
- in ROS, this is what we call a node. inter-process data passing however is inefficient. ideally we need shared memory.

Solution:
nodelets = “nodes in nodes” = single-process, multi-threading

- same ROS API as nodes (subscribe, advertise, publish)
- dynamically (un)loadable
- optimizations for zero-copy Boost shared_ptr passing
- PCL nodelets use *dynamic_reconfigure* for on-the-fly parameter setting
Downsample and filtering example with nodelets

```xml
<launch>
 <node pkg="nodelet" type="standalone_nodelet" name="pcl_manager" output="screen" />
 <node pkg="nodelet" type="nodelet" name="foo" args="voxel_grid,VoxelGrid,pcl_manager">
 <remap from="/voxel_grid/input" to="/narrow_stereo_textured/points" />
 <rosparam>
 # -[Mandatory parameters
 leaf_size: [0.015, 0.015, 0.015]
 # -[Optional parameters
 # field containing distance values (for filtering)
 filter_field_name: "z"
 # filtering points outside of <0.8,5.0>
 filter_limit_min: 0.8
 filter_limit_max: 5.0
 use_indices: false # false by default
 </rosparam>
 </node>
...</launch>
```
Normal estimation example with nodelets

```xml
<launch>
 <node pkg="nodelet" type="standalone_nodelet" name="pcl_manager" output="screen" />

 <node pkg="nodelet" type="nodelet" name="foo" args="normal_estimation_NormalEstimation_pcl_manager">
 <remap from="/normal_estimation/input" to="/voxel_grid/output" />
 <remap from="/normal_estimation/surface" to="/narrow_stereo_textured/points" />
 </node>

 <rosparam>
 # -[Mandatory parameters
 # Set either 'k_search' or 'radius_search'
 k_search: 0
 radius_search: 0.1
 # Set the spatial locator. Possible values are:
 # 0 (ANN), 1 (FLANN), 2 (organized)
 spatial_locator: 0
 </rosparam>

 ...
</node>
</launch>
```
Introduction Motivation Acquisition Data representation Storage [PCL] PCL Examples

PCL - Table Object Detector

How to extract a table plane and the objects lying on it

PointCloud2 → VoxelGrid → NormalEstimation → ProjectInliers

SACSegmentationFromNormals (planar segmentation)

ExtractInliers

ConvexHull2D

ExtractPolygonalPrismData (get all points lying on the table)

EuclideanClusterExtraction (split the points into N object clusters)

TablePlane

ObjectClusters

Radu Bogdan RUSU
Introduction
Motivation
Acquisition
Data representation
Storage
PCL

Outline

1. Introduction
2. Motivation
3. Acquisition
4. Data representation
5. Storage
6. PCL
7. PCL Examples
Filters :: Examples (1/4)

```cpp
pcl::PassThrough<T> p;

p.setInputCloud (data);
p.FilterLimits (0.0, 0.5);
p.SetFilterFieldName ("z");
```

```cpp
filter_field_name = "x"; | filter_field_name = "xz";
```

Radu Bogdan RUSU

Point Cloud Library
Filters :: Examples (2/4)

```cpp
pcl::VoxelGrid<T> p;
p.setInputCloud(data);
p.FilterLimits (0.0, 0.5);
p.SetFilterFieldName("z");
p.setLeafSize (0.01, 0.01, 0.01);
```
Filters :: Examples (3/4)

```cpp
pcl::StatisticalOutlierRemoval<T> p;

p.setInputCloud (data);
p.setMeanK (50);
p.setStddevMulThresh (1.0);
```
Filters :: Examples (4/4)

```cpp
pcl::MovingLeastSquares<T> p; // (note: more of a surface reconstruction)

p.setInputCloud (data);
p.setPolynomialOrder (3);
p setSearchRadius (0.02);
```
p: NormalEstimation<T> p;

- p.setInputCloud (data);
- p.SetRadiusSearch (0.01);
Features :: Examples (2/9)

Surface Normal Estimation Theory

- Given a point cloud with x,y,z 3D point coordinates
Surface Normal Estimation Theory

- Given a point cloud with x,y,z 3D point coordinates
- Select each point’s $k$-nearest neighbors, fit a local plane, and compute the plane normal
Features :: Examples (3/9)

Surface Normal Estimation Theory

bad scale (too small)  good scale

Selecting the right scale ($k$-neighborhood) is problematic:
Features :: Examples (4-5/9)

Consistent Normal Orientation

Before

- Extended Gaussian Image
- Orientation consistent for:
  1. registration
  2. feature estimation
  3. surface representation
- normals on the Gaussian sphere
- should be in the same half-space

Radu Bogdan RUSU
Point Cloud Library
Consistent Normal Orientation

Before

After

\[(\text{viewpoint} - p_i) \cdot n_{p_i} \geq 0\]

or:

propagate consistency through an EMST

Radu Bogdan RUSU
Features :: Examples (6/9)

```cpp
pcl::NormalEstimation<T> p;

p.setInputCloud (data);
p.SetRadiusSearch (0.01);
```
Features :: Examples (7/9)

```cpp
pcl::BoundaryEstimation<T,N> p;

p.setInputCloud (data);
p.setInputNormals (normals);
p.SetRadiusSearch (0.01);
```
Features :: Examples (8/9)

cpl::PrincipalCurvaturesEstimation<T,N> p;

```
▶ p.setInputCloud (data);
p.setInputNormals (normals);
p.SetRadiusSearch (0.01);
```
Features :: Examples (9/9)

Other features

- RIFT (Rotation Invariant Feature Transform)
- occlusion/natural border extraction (range images)
- intensity gradients
- moment invariants
- spin images
- PFH (Point Feature Histogram)
- FPFH (Fast Point Feature Histogram)
- VFH (Viewpoint Feature Histogram) - cluster descriptor
- soon: RSD (Radial Signature Descriptor), etc

All use the same API:

```java
p.setInputCloud (cloud);
p.setInputNormals (normals); // where needed
p.setParameterX (...);
```
Segmentation :: Examples (1/5)

```cpp
pcl::SACSegmentation<T> p;

p.setInputCloud (data);
p.setModelType (pcl::SACMODEL_PLANE);
p.setMethodType (pcl::SAC_RANSAC);
p.setDistanceThreshold (0.01);
```
Segmentation :: Examples (2/5)

```cpp
pcl::ConvexHull2D<T> p;

p.setInputCloud (data);
```
Segmentation :: Examples (3/5)

```cpp
pcl::ExtractPolygonalPrismData<T> p;

p.setInputCloud (data);
p.setInputPlanarHull (hull);
p.setHeightLimits (0.0, 0.2);
```
Segmentation :: Examples (4/5)

```cpp
pcl::EuclideanClusterExtraction<T> p;
p.setInputCloud (data);
p.setClusterTolerance (0.05);
p.setMinClusterSize (1);
```

Radu Bogdan RUSU
Segmentation :: Examples (5/5)

```cpp
pcl::SegmentDifferences<T> p;

▶ p.setInputCloud (source);
p.setTargetCloud (target);
p.setDistanceThreshold (0.001);
```